Search results for "Sobolev space"

showing 10 items of 164 documents

Vertical versus horizontal Sobolev spaces

2020

Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev sp…

010102 general mathematicsMetric Geometry (math.MG)Function (mathematics)Lipschitz continuity01 natural sciencesFunctional Analysis (math.FA)Fractional calculusSobolev spaceCombinatoricsMathematics - Functional AnalysisMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesVertical directionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupOrder (group theory)010307 mathematical physics0101 mathematics46E35 (Primary) 26A33 35R03 43A15 (Secondary)AnalysisMathematics
researchProduct

On the continuous and discontinuous maximal operators

2018

Abstract In the first part of this paper we study the regularity properties of a wide class of maximal operators. These results are used to show that the spherical maximal operator is continuous W 1 , p ( R n ) ↦ W 1 , p ( R n ) , when p > n n − 1 . Other given applications include fractional maximal operators and maximal singular integrals. On the other hand, we show that the restricted Hardy–Littlewood maximal operator M λ , where the supremum is taken over the cubes with radii greater than λ > 0 , is bounded from L p ( R n ) to W 1 , p ( R n ) but discontinuous.

0301 basic medicineClass (set theory)Applied Mathematicsta111010102 general mathematicsoperatorsSingular integralcontinuity01 natural sciencesInfimum and supremumCombinatorics03 medical and health sciences030104 developmental biologySobolev spacesBounded functionjatkuvuusMaximal operator0101 mathematicsmaximal operatorAnalysisoperaattorit (matematiikka)MathematicsNonlinear Analysis
researchProduct

Sharp capacity estimates for annuli in weighted R^n and in metric spaces

2017

We obtain estimates for the nonlinear variational capacity of annuli in weighted R^n and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted R^n. Indeed, to illustrate the sharpness of our estimates, we give several examples of radially weighted R^n, which …

31C45 (Primary) 30C65 30L99 31B15 31C15 31E0 (Secondary)annulusmetric spacequasiconformal mappingMathematical Analysisexponent setsp-admissible weightSobolev spaceradial weightMathematics - Analysis of PDEsAnnulus; Doubling measure; Exponent sets; Metric space; Newtonian space; p-admissible weight; Poincare inequality; Quasiconformal mapping; Radial weight; Sobolev space; Variational capacityMatematisk analysPoincaré inequalitydoubling measureFOS: MathematicsNewtonian spacevariational capacityAnalysis of PDEs (math.AP)
researchProduct

Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation

2021

We look for solutions to the Schr\"{o}dinger-Poisson-Slater equation $$- \Delta u + \lambda u - \gamma (|x|^{-1} * |u|^2) u - a |u|^{p-2}u = 0 \quad \text{in} \quad \mathbb{R}^3, $$ which satisfy \begin{equation*} \int_{\mathbb{R}^3}|u|^2 \, dx = c \end{equation*} for some prescribed $c>0$. Here $ u \in H^1(\mathbb{R}^3)$, $\gamma \in \mathbb{R},$ $ a \in \mathbb{R}$ and $p \in (\frac{10}{3}, 6]$. When $\gamma >0$ and $a > 0$, both in the Sobolev subcritical case $p \in (\frac{10}{3}, 6)$ and in the Sobolev critical case $p=6$, we show that there exists a $c_1>0$ such that, for any $c \in (0,c_1)$, the equation admits two solutions $u_c^+$ and $u_c^-$ which can be characterized respectively…

Applied Mathematics010102 general mathematics16. Peace & justicePoisson distribution01 natural sciences010101 applied mathematicsSobolev spaceCombinatoricssymbols.namesakeMathematics - Analysis of PDEsCritical point (thermodynamics)symbols[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsAnalysisSchrödinger's catEnergy functionalMathematics
researchProduct

Approximation and quasicontinuity of Besov and Triebel–Lizorkin functions

2016

We show that, for $0<s<1$, $0<p<\infty$, $0<q<\infty$, Haj\l asz-Besov and Haj\l asz-Triebel-Lizorkin functions can be approximated in the norm by discrete median convolutions. This allows us to show that, for these functions, the limit of medians, \[ \lim_{r\to 0}m_u^\gamma(B(x,r))=u^*(x), \] exists quasieverywhere and defines a quasicontinuous representative of $u$. The above limit exists quasieverywhere also for Haj\l asz functions $u\in M^{s,p}$, $0<s\le 1$, $0<p<\infty$, but approximation of $u$ in $M^{s,p}$ by discrete (median) convolutions is not in general possible.

Applied MathematicsGeneral Mathematicsmedian010102 general mathematicsMathematical analysista111QuasicontinuityMedianMetric measure space010103 numerical & computational mathematicsTriebel–Lizorkin spaceTriebel–Lizorkin space01 natural sciencesFractional Sobolev spaceCombinatoricsmetric measure spaceBesov spacequasicontinuityLimit (mathematics)0101 mathematicsBesov spacefractional Sobolev spaceMathematicsTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
researchProduct

Dimension estimates for the boundary of planar Sobolev extension domains

2020

We prove an asymptotically sharp dimension upper-bound for the boundary of bounded simply-connected planar Sobolev $W^{1,p}$-extension domains via the weak mean porosity of the boundary. The sharpness of our estimate is shown by examples.

Applied MathematicsMathematical analysisBoundary (topology)Extension (predicate logic)Physics::Classical PhysicsFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisPlanarDimension (vector space)46E35 28A75Mathematics - Classical Analysis and ODEsBounded functionClassical Analysis and ODEs (math.CA)FOS: MathematicsAnalysisMathematics
researchProduct

ASYMPTOTIC ANALYSIS OF THE LINEARIZED NAVIER–STOKES EQUATION ON AN EXTERIOR CIRCULAR DOMAIN: EXPLICIT SOLUTION AND THE ZERO VISCOSITY LIMIT

2001

In this paper we study and derive explicit formulas for the linearized Navier-Stokes equations on an exterior circular domain in space dimension two. Through an explicit construction, the solution is decomposed into an inviscid solution, a boundary layer solution and a corrector. Bounds on these solutions are given, in the appropriate Sobolev spaces, in terms of the norms of the initial and boundary data. The correction term is shown to be of the same order of magnitude as the square root of the viscosity. Copyright © 2001 by Marcel Dekker, Inc.

Asymptotic analysisApplied MathematicsMathematical analysisAsymptotic analysis; Boundary layer; Explicit solutions; Navier-Stokes equations; Stokes equations; Zero viscosity; Mathematics (all); Analysis; Applied MathematicsMathematics::Analysis of PDEsAnalysiStokes equationDomain (mathematical analysis)Navier-Stokes equationPhysics::Fluid DynamicsSobolev spaceAsymptotic analysiBoundary layersymbols.namesakeBoundary layerSquare rootExplicit solutionInviscid flowStokes' lawsymbolsMathematics (all)Zero viscosityNavier–Stokes equationsAnalysisMathematicsCommunications in Partial Differential Equations
researchProduct

Parametric and nonparametric A-Laplace problems: Existence of solutions and asymptotic analysis

2021

We give sufficient conditions for the existence of weak solutions to quasilinear elliptic Dirichlet problem driven by the A-Laplace operator in a bounded domain Ω. The techniques, based on a variant of the symmetric mountain pass theorem, exploit variational methods. We also provide information about the asymptotic behavior of the solutions as a suitable parameter goes to 0 + . In this case, we point out the existence of a blow-up phenomenon. The analysis developed in this paper extends and complements various qualitative and asymptotic properties for some cases described by homogeneous differential operators.

Asymptotic analysisLaplace transformGeneral Mathematics010102 general mathematicsNonparametric statistics01 natural sciencesDirichlet boundary value problem010101 applied mathematicsasymptotic analysisA-Laplace operatorOrlicz-Sobolev spaceSettore MAT/05 - Analisi MatematicaApplied mathematics0101 mathematicsParametric statisticsMathematicsAsymptotic Analysis
researchProduct

Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces

2021

We show that, given a metric space (Y,d)(Y,d) of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure μμ on YY giving finite mass to bounded sets, the resulting metric measure space (Y,d,μ)(Y,d,μ) is infinitesimally Hilbertian, i.e. the Sobolev space W1,2(Y,d,μ)W1,2(Y,d,μ) is a Hilbert space. The result is obtained by constructing an isometric embedding of the ‘abstract and analytical’ space of derivations into the ‘concrete and geometrical’ bundle whose fibre at x∈Yx∈Y is the tangent cone at x of YY. The conclusion then follows from the fact that for every x∈Yx∈Y such a cone is a CAT(0)CAT(0) space and, as such, has a Hilbert-like structure. peerReviewed

CAT spacesSettore MAT/05 - Analisi MatematicaSobolev spacesmetric geometrygeometriaMetric geometrymetriset avaruudet
researchProduct

A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions

2010

Abstract In this paper, we establish the equivalence between the Hajlasz–Sobolev spaces or classical Triebel–Lizorkin spaces and a class of grand Triebel–Lizorkin spaces on Euclidean spaces and also on metric spaces that are both doubling and reverse doubling. In particular, when p ∈ ( n / ( n + 1 ) , ∞ ) , we give a new characterization of the Hajlasz–Sobolev spaces M ˙ 1 , p ( R n ) via a grand Littlewood–Paley function.

Calderón reproducing formulaMathematics::Functional AnalysisPure mathematicsTopological tensor product010102 general mathematicsMathematical analysisMathematics::Classical Analysis and ODEsTriebel–Lizorkin spaceTriebel–Lizorkin space01 natural sciences010101 applied mathematicsUniform continuityFréchet spaceSobolev spacesInterpolation spaceBesov spaceBirnbaum–Orlicz space0101 mathematicsLp spaceAnalysisMathematicsJournal of Functional Analysis
researchProduct